Performance of Viscoelastically Damped Multilayer **Structures Subjected to Shock Excitation**

A. D. Kapur* Punjab College, Chandigarh, India and B. C. Nakra* Indian Institute of Technology, Delhi, India

Theme

HIS paper compares the shock response and damping effectiveness of viscoelasticity damped two-, three-, and five-layer simply supported sandwich beams (Fig. 1) subjected to half-sine-type shock excitation (Fig. 2). The comparison is made on constant size-and-weight criterion to study their relative performance. The computations are based on the generalized analysis developed in Ref. 1 in which dynamic properties of the viscoelastic material are represented (as in Ref. 2) by four-element viscoelastic model (Fig. 3); bending rigidity of the faces and rotary and logitudinal inertias of all the layers are taken into account. In the previous analyses for the shock response of multilayer structures, either a more restrictive viscoelastic model has been assumed, 3 the above mentioned inertias have been neglected, 3,4 or the faces have been assumed as membranes 5 only. Thus the results presented here are based on a more refined analysis.

Contents

The underlying assumption for the analysis in Ref. 1 are a) transverse sections of the face layers 1, 3, 5 in the five-layer beam, layers 1 and 3 in the three-layer beam, and both layers in the two-layer beam (Fig. 1) remain plane and normal to the longitudinal fibers of the respective layers before and after bending, shear deformation being neglected in all layers; b) at a given section, transverse displacement remains constant throughout the beam thickness; c) all displacements are assumed to be small; d) there is no interfacial slip; e) viscoelastic material is linear; f) strain energy due to longitudinal extension and bending is neglected for core layers 2 and 4 in the five-layer beam and layer 2 in the three-layer beam; g) longitudinal displacements u_i vary as shown in Fig.

The solutions for transverse displacement response of a simply supported five-layer beam subjected to half-sine shock loading as obtained during and after the pulse era, respectively, are as follows. The loading is applied to both ends of the beam simultaneously (as in a standard drop test)

$$\bar{W}(\bar{x},t) = \sum_{n=1,3}^{\infty} \left[\sum_{i=1}^{10} J_i e^{\Lambda_i t} + A \cos \omega t + B \sin \omega t \right] \sin n\pi \bar{x}$$

and

$$\bar{w}(\bar{x},t) = \sum_{n=1,3}^{\infty} \left[\sum_{i=1}^{10} J_i e^{\Lambda_i t} \left(1 + e^{-\Lambda_i \tau} \right) \right] \sin n\pi \bar{x}$$

Received Jan. 20, 1976; synoptic received March 31, 1976; revision received Sept. 27, 1976. Full paper available from National Technical Information Service, Springfield, Va., 22151, as N76-32580 at the standard price (available upon request).

Index category: Structural Dynamic Analysis.

where $\bar{w} = w/L$, $\bar{x} = x/L$, t is the time, τ is the shock duration, Λ_i is *i*th root of 10th-order polynominal in the analysis, J_i , A, and B are constants depending upon the data, w is the transverse displacement, L is the beam length, ω is the angular frequency in rps, and x is the space coordinate in the longitudinal direction. Solutions in a similar form as above can be obtained 1 for the shock response of a simply supported three-layer beam with viscoelastic core and for a simply supported two-layer beam with one of the layers as viscoelastic (the top layer in the present case). These solutions are employed to calculate shock response \overline{x} in the case of different

Width, length, total thickness, and materials have been kept identical for two- three-, and five-layer simply supported beams while comparing their performance. Let t_e and t_v be the respective thickness of the elastic and viscoelastic layers of the two-layer beam. The corresponding three- and five-layer beams are made symmetrical in configuration having total thickness of elastic and viscoelastic layers as t_e and t_v , respec-

The data used for Figs. 4 and 5 are width = 5 cm, L = 50cm, $t_e = 0.5$ cm, thickness ratio $t_v/t_e = 5.0$, $f_e = 0.28 \times 10^{-5}$ $kg - sec^2/cm^4$, $\int_e/\int_e = 0.5$, v = 20 cm/sec, $E_e = 7 \times 10^5$ kg/cm², $\tau = \pi/500$ sec, where \int_e and \int_v are the mass densities/unit volume for elastic and viscoelastic materials, respectively, v = velocity of impact, and E_e is Young's modulus of the elastic material. Typical values of the model constants for the viscoelastic material in shear (three-layer and five-layer beams) are $\eta_2 = 0.0282$ kg-sec/cm², $\eta_3 = 0.0225$ kg-sec/cm², $\zeta_3 = 84.5$ kg/cm²; ζ_1 , which represents the static modulus, is kept variable. Assuming the viscoelastic material to be incompressible, the values of the model constants for the material in direct strain (a two-layer beam) can be shown 1 to be three times the above values. Thus $E^* = 3G^*$ where E^* is the ratio of ζ_I and E_e when ζ_I refers to the material in direct strain and G^* is this ratio when ζ_I refers to the material in shear strain. The term \overline{w}_{cp} in Fig. 4 represents the peak value of \overline{w} at the center of the beam span. Log-decrement δ in Fig. 5 has been taken as the natural logarithm of the ratio of two successive transverse displacement amplitudes of like sign occurring immediately after the disappearance of the shock pulse. Figures 6 and 7 have been plotted taking E^* (=3 G^*) equal to 1.5 × 10⁻² and 1.5×10^{-4} , respectively, keeping thickness ratio t_v/t_e as variable and using all other parameters as in Figs. 4 and 5. In all these figures, the symbols 2-L, 3-L, and 5-L, stand for two-, three-, and five-layer simply supported beams, respec-

It is seen that in the case of the two-layer beam with an unconstrained viscoelastic layer, peak displacement response is the highest (Figs. 4 and 6) and the damping effectiveness is the least (Figs. 5 and 7). Figures 6 and 7 show that the thickness ratio t_v/t_e has to be relatively large in the case of the two-layer beam to achieve any significant reduction in peak displacement response or any significant gain in damping ef-

^{*}Professor, Dept. of Mechanical Engineering.

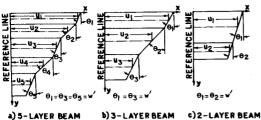


Fig. 1 Longitudinal displacements (magnitudes only).

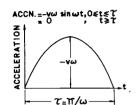


Fig. 2 Half-sine wave pulse acceleration.

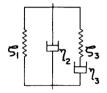


Fig. 3 Four-element viscoelastic model.

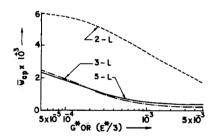


Fig. 4 Variation of $\overline{\omega_{cp}}$ with G^* and E^* .

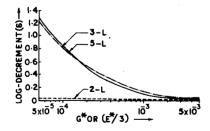


Fig. 5 Variation of δ with G^* and E^* .

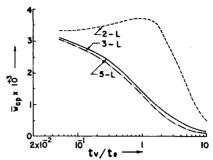


Fig. 6 Variation of $\overline{\omega_{cp}}$ with thickness ratio.

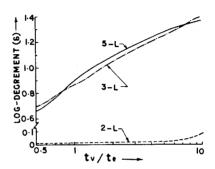


Fig. 7 Variation of δ with thickness ratio.

fectiveness. Furthermore, comparing the performance of the five-layer arrangement with that of a corresponding three-layer one, it is seen (Figs. 4-7) that any one of these may perform better depending upon the values of parameters G^* and t_v/t_e . The present study, however, indicates that a five-layer arrangement shows better effectiveness in peak displacement response (Fig. 4) and damping (Fig. 5) when G^* is smaller i.e., viscoelastic material is relatively softer.

References

¹Kapur, A.D., "Vibration Response of Multilayer Beams Subjected to Shock Excitation," Ph.D. dissertation, Indian Institute of Technology, Delhi, India, 1974.

²Bland, D.R. and Lee, E.H., "On the Determination of a Viscoelastic Model for Stress Analysis of Plastics," *Journal of Applied Mechanics*, Vol. 23, Sept. 1956, pp. 416-420.

³Chawla, D.R. and Nakra, B.C., "Transient Response of Sandwich Simply Supported Beam with Linear Viscoelastic Core," *Proceedings of the XV Congress of the Indian Society of Theoretical and Applied Mechanics*, Sindri, India, Dec. 1970.

⁴Jones, I.W., "Damping of Plate Vibrations by Means of Attached Viscoelastic Material," *Shock and Vibration Bulletin*, Part 4, pp. 63-72, 1969.

⁵Chang, C.C. and Fang, B.T., "Transient and Periodic Response of a Loading Sandwich Panel," *Journal of Aerospace Sciences*, Vol. 28, May 1961, pp. 382-396.